<strike id="cakm0"></strike>
  • <button id="cakm0"><dl id="cakm0"></dl></button>
  • <samp id="cakm0"><tbody id="cakm0"></tbody></samp>
    <samp id="cakm0"><pre id="cakm0"></pre></samp><ul id="cakm0"></ul>
    <strike id="cakm0"></strike>
    <li id="cakm0"></li>
  • <ul id="cakm0"></ul>
  • 更多精彩內(nèi)容,歡迎關(guān)注:

    視頻號
    視頻號

    抖音
    抖音

    快手
    快手

    微博
    微博

    堆排序代碼數(shù)據(jù)結(jié)構(gòu)

    文檔

    堆排序代碼數(shù)據(jù)結(jié)構(gòu)

    堆排序(Heapsort)是指利用堆這種數(shù)據(jù)結(jié)構(gòu)所設(shè)計(jì)的一種排序算法。堆積是一個近似完全二叉樹的結(jié)構(gòu),并同時滿足堆積的性質(zhì):即子結(jié)點(diǎn)的鍵值或索引總是小于(或者大于)它的父節(jié)點(diǎn)。堆排序可以說是一種利用堆的概念來排序的選擇排序。
    推薦度:
    導(dǎo)讀堆排序(Heapsort)是指利用堆這種數(shù)據(jù)結(jié)構(gòu)所設(shè)計(jì)的一種排序算法。堆積是一個近似完全二叉樹的結(jié)構(gòu),并同時滿足堆積的性質(zhì):即子結(jié)點(diǎn)的鍵值或索引總是小于(或者大于)它的父節(jié)點(diǎn)。堆排序可以說是一種利用堆的概念來排序的選擇排序。
    .example-btn{color:#fff;background-color:#5cb85c;border-color:#4cae4c}.example-btn:hover{color:#fff;background-color:#47a447;border-color:#398439}.example-btn:active{background-image:none}div.example{width:98%;color:#000;background-color:#f6f4f0;background-color:#d0e69c;background-color:#dcecb5;background-color:#e5eecc;margin:0 0 5px 0;padding:5px;border:1px solid #d4d4d4;background-image:-webkit-linear-gradient(#fff,#e5eecc 100px);background-image:linear-gradient(#fff,#e5eecc 100px)}div.example_code{line-height:1.4em;width:98%;background-color:#fff;padding:5px;border:1px solid #d4d4d4;font-size:110%;font-family:Menlo,Monaco,Consolas,"Andale Mono","lucida console","Courier New",monospace;word-break:break-all;word-wrap:break-word}div.example_result{background-color:#fff;padding:4px;border:1px solid #d4d4d4;width:98%}div.code{width:98%;border:1px solid #d4d4d4;background-color:#f6f4f0;color:#444;padding:5px;margin:0}div.code div{font-size:110%}div.code div,div.code p,div.example_code p{font-family:"courier new"}pre{margin:15px auto;font:12px/20px Menlo,Monaco,Consolas,"Andale Mono","lucida console","Courier New",monospace;white-space:pre-wrap;word-break:break-all;word-wrap:break-word;border:1px solid #ddd;border-left-width:4px;padding:10px 15px}

    排序算法是《數(shù)據(jù)結(jié)構(gòu)與算法》中最基本的算法之一。排序算法可以分為內(nèi)部排序和外部排序,內(nèi)部排序是數(shù)據(jù)記錄在內(nèi)存中進(jìn)行排序,而外部排序是因排序的數(shù)據(jù)很大,一次不能容納全部的排序記錄,在排序過程中需要訪問外存。常見的內(nèi)部排序算法有:插入排序、希爾排序、選擇排序、冒泡排序、歸并排序、快速排序、堆排序、基數(shù)排序等。以下是堆排序算法:

    堆排序(Heapsort)是指利用堆這種數(shù)據(jù)結(jié)構(gòu)所設(shè)計(jì)的一種排序算法。堆積是一個近似完全二叉樹的結(jié)構(gòu),并同時滿足堆積的性質(zhì):即子結(jié)點(diǎn)的鍵值或索引總是小于(或者大于)它的父節(jié)點(diǎn)。堆排序可以說是一種利用堆的概念來排序的選擇排序。分為兩種方法:

    大頂堆:每個節(jié)點(diǎn)的值都大于或等于其子節(jié)點(diǎn)的值,在堆排序算法中用于升序排列;小頂堆:每個節(jié)點(diǎn)的值都小于或等于其子節(jié)點(diǎn)的值,在堆排序算法中用于降序排列;

    堆排序的平均時間復(fù)雜度為 Ο(nlogn)。

    1. 算法步驟

    創(chuàng)建一個堆 H[0……n-1];

    把堆首(最大值)和堆尾互換;

    把堆的尺寸縮小 1,并調(diào)用 shift_down(0),目的是把新的數(shù)組頂端數(shù)據(jù)調(diào)整到相應(yīng)位置;

    重復(fù)步驟 2,直到堆的尺寸為 1。

    2. 動圖演示

    代碼實(shí)現(xiàn)JavaScript 實(shí)例 var len; ? ?// 因?yàn)槁暶鞯亩鄠€函數(shù)都需要數(shù)據(jù)長度,所以把len設(shè)置成為全局變量function buildMaxHeap(arr) { ? // 建立大頂堆? ? len = arr.length;? ? for (var i = Math.floor(len/2); i >= 0; i--) {? ? ? ? heapify(arr, i);? ? }}function heapify(arr, i) { ? ? // 堆調(diào)整? ? var left = 2 * i + 1,? ? ? ? right = 2 * i + 2,? ? ? ? largest = i;? ? if (left < len && arr[left] > arr[largest]) {? ? ? ? largest = left;? ? }? ? if (right < len && arr[right] > arr[largest]) {? ? ? ? largest = right;? ? }? ? if (largest != i) {? ? ? ? swap(arr, i, largest);? ? ? ? heapify(arr, largest);? ? }}function swap(arr, i, j) {? ? var temp = arr[i];? ? arr[i] = arr[j];? ? arr[j] = temp;}function heapSort(arr) {? ? buildMaxHeap(arr);? ? for (var i = arr.length-1; i > 0; i--) {? ? ? ? swap(arr, 0, i);? ? ? ? len--;? ? ? ? heapify(arr, 0);? ? }? ? return arr;}Python實(shí)例 def buildMaxHeap(arr):? ? import math? ? for i in range(math.floor(len(arr)/2),-1,-1):? ? ? ? heapify(arr,i)def heapify(arr, i):? ? left = 2*i+1? ? right = 2*i+2? ? largest = i? ? if left < arrLen and arr[left] > arr[largest]:? ? ? ? largest = left? ? if right < arrLen and arr[right] > arr[largest]:? ? ? ? largest = right? ? if largest != i:? ? ? ? swap(arr, i, largest)? ? ? ? heapify(arr, largest)def swap(arr, i, j):? ? arr[i], arr[j] = arr[j], arr[i]def heapSort(arr):? ? global arrLen? ? arrLen = len(arr)? ? buildMaxHeap(arr)? ? for i in range(len(arr)-1,0,-1):? ? ? ? swap(arr,0,i)? ? ? ? arrLen -=1? ? ? ? heapify(arr, 0)? ? return arrGo實(shí)例 func heapSort(arr []int) []int {? ? ? ? arrLen := len(arr)? ? ? ? buildMaxHeap(arr, arrLen)? ? ? ? for i := arrLen - 1; i >= 0; i-- {? ? ? ? ? ? ? ? swap(arr, 0, i)? ? ? ? ? ? ? ? arrLen -= 1? ? ? ? ? ? ? ? heapify(arr, 0, arrLen)? ? ? ? }? ? ? ? return arr}func buildMaxHeap(arr []int, arrLen int) {? ? ? ? for i := arrLen / 2; i >= 0; i-- {? ? ? ? ? ? ? ? heapify(arr, i, arrLen)? ? ? ? }}func heapify(arr []int, i, arrLen int) {? ? ? ? left := 2*i + 1? ? ? ? right := 2*i + 2? ? ? ? largest := i? ? ? ? if left < arrLen && arr[left] > arr[largest] {? ? ? ? ? ? ? ? largest = left? ? ? ? }? ? ? ? if right < arrLen && arr[right] > arr[largest] {? ? ? ? ? ? ? ? largest = right? ? ? ? }? ? ? ? if largest != i {? ? ? ? ? ? ? ? swap(arr, i, largest)? ? ? ? ? ? ? ? heapify(arr, largest, arrLen)? ? ? ? }}func swap(arr []int, i, j int) {? ? ? ? arr[i], arr[j] = arr[j], arr[i]}Java實(shí)例 public class HeapSort implements IArraySort {? ? @Override? ? public int[] sort(int[] sourceArray) throws Exception {? ? ? ? // 對 arr 進(jìn)行拷貝,不改變參數(shù)內(nèi)容? ? ? ? int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);? ? ? ? int len = arr.length;? ? ? ? buildMaxHeap(arr, len);? ? ? ? for (int i = len - 1; i > 0; i--) {? ? ? ? ? ? swap(arr, 0, i);? ? ? ? ? ? len--;? ? ? ? ? ? heapify(arr, 0, len);? ? ? ? }? ? ? ? return arr;? ? }? ? private void buildMaxHeap(int[] arr, int len) {? ? ? ? for (int i = (int) Math.floor(len / 2); i >= 0; i--) {? ? ? ? ? ? heapify(arr, i, len);? ? ? ? }? ? }? ? private void heapify(int[] arr, int i, int len) {? ? ? ? int left = 2 * i + 1;? ? ? ? int right = 2 * i + 2;? ? ? ? int largest = i;? ? ? ? if (left < len && arr[left] > arr[largest]) {? ? ? ? ? ? largest = left;? ? ? ? }? ? ? ? if (right < len && arr[right] > arr[largest]) {? ? ? ? ? ? largest = right;? ? ? ? }? ? ? ? if (largest != i) {? ? ? ? ? ? swap(arr, i, largest);? ? ? ? ? ? heapify(arr, largest, len);? ? ? ? }? ? }? ? private void swap(int[] arr, int i, int j) {? ? ? ? int temp = arr[i];? ? ? ? arr[i] = arr[j];? ? ? ? arr[j] = temp;? ? }}PHP 實(shí)例 function buildMaxHeap(&$arr){? ? global $len;? ? for ($i = floor($len/2); $i >= 0; $i--) {? ? ? ? heapify($arr, $i);? ? }}function heapify(&$arr, $i){? ? global $len;? ? $left = 2 * $i + 1;? ? $right = 2 * $i + 2;? ? $largest = $i;? ? if ($left < $len && $arr[$left] > $arr[$largest]) {? ? ? ? $largest = $left;? ? }? ? if ($right < $len && $arr[$right] > $arr[$largest]) {? ? ? ? $largest = $right;? ? }? ? if ($largest != $i) {? ? ? ? swap($arr, $i, $largest);? ? ? ? heapify($arr, $largest);? ? }}function swap(&$arr, $i, $j){? ? $temp = $arr[$i];? ? $arr[$i] = $arr[$j];? ? $arr[$j] = $temp;}function heapSort($arr) {? ? global $len;? ? $len = count($arr);? ? buildMaxHeap($arr);? ? for ($i = count($arr) - 1; $i > 0; $i--) {? ? ? ? swap($arr, 0, $i);? ? ? ? $len--;? ? ? ? heapify($arr, 0);? ? }? ? return $arr;}C實(shí)例 #include #include void swap(int *a, int *b) {? ? int temp = *b;? ? *b = *a;? ? *a = temp;}void max_heapify(int arr[], int start, int end) {? ? // 建立父節(jié)點(diǎn)指標(biāo)和子節(jié)點(diǎn)指標(biāo)? ? int dad = start;? ? int son = dad * 2 + 1;? ? while (son <= end) { // 若子節(jié)點(diǎn)指標(biāo)在範(fàn)圍內(nèi)才做比較? ? ? ? if (son + 1 <= end && arr[son] < arr[son + 1]) // 先比較兩個子節(jié)點(diǎn)大小,選擇最大的? ? ? ? ? ? son++;? ? ? ? if (arr[dad] > arr[son]) //如果父節(jié)點(diǎn)大於子節(jié)點(diǎn)代表調(diào)整完畢,直接跳出函數(shù)? ? ? ? ? ? return;? ? ? ? else { // 否則交換父子內(nèi)容再繼續(xù)子節(jié)點(diǎn)和孫節(jié)點(diǎn)比較? ? ? ? ? ? swap(&arr[dad], &arr[son]);? ? ? ? ? ? dad = son;? ? ? ? ? ? son = dad * 2 + 1;? ? ? ? }? ? }}void heap_sort(int arr[], int len) {? ? int i;? ? // 初始化,i從最後一個父節(jié)點(diǎn)開始調(diào)整? ? for (i = len / 2 - 1; i >= 0; i--)? ? ? ? max_heapify(arr, i, len - 1);? ? // 先將第一個元素和已排好元素前一位做交換,再重新調(diào)整,直到排序完畢? ? for (i = len - 1; i > 0; i--) {? ? ? ? swap(&arr[0], &arr[i]);? ? ? ? max_heapify(arr, 0, i - 1);? ? }}int main() {? ? int arr[] = { 3, 5, 3, 0, 8, 6, 1, 5, 8, 6, 2, 4, 9, 4, 7, 0, 1, 8, 9, 7, 3, 1, 2, 5, 9, 7, 4, 0, 2, 6 };? ? int len = (int) sizeof(arr) / sizeof(*arr);? ? heap_sort(arr, len);? ? int i;? ? for (i = 0; i < len; i++)? ? ? ? printf("%d ", arr[i]);? ? printf(" ");? ? return 0;}C++實(shí)例 #include #include using namespace std;void max_heapify(int arr[], int start, int end) {? ? // 建立父節(jié)點(diǎn)指標(biāo)和子節(jié)點(diǎn)指標(biāo)? ? int dad = start;? ? int son = dad * 2 + 1;? ? while (son <= end) { // 若子節(jié)點(diǎn)指標(biāo)在範(fàn)圍內(nèi)才做比較? ? ? ? if (son + 1 <= end && arr[son] < arr[son + 1]) // 先比較兩個子節(jié)點(diǎn)大小,選擇最大的? ? ? ? ? ? son++;? ? ? ? if (arr[dad] > arr[son]) // 如果父節(jié)點(diǎn)大於子節(jié)點(diǎn)代表調(diào)整完畢,直接跳出函數(shù)? ? ? ? ? ? return;? ? ? ? else { // 否則交換父子內(nèi)容再繼續(xù)子節(jié)點(diǎn)和孫節(jié)點(diǎn)比較? ? ? ? ? ? swap(arr[dad], arr[son]);? ? ? ? ? ? dad = son;? ? ? ? ? ? son = dad * 2 + 1;? ? ? ? }? ? }}void heap_sort(int arr[], int len) {? ? // 初始化,i從最後一個父節(jié)點(diǎn)開始調(diào)整? ? for (int i = len / 2 - 1; i >= 0; i--)? ? ? ? max_heapify(arr, i, len - 1);? ? // 先將第一個元素和已經(jīng)排好的元素前一位做交換,再從新調(diào)整(剛調(diào)整的元素之前的元素),直到排序完畢? ? for (int i = len - 1; i > 0; i--) {? ? ? ? swap(arr[0], arr[i]);? ? ? ? max_heapify(arr, 0, i - 1);? ? }}int main() {? ? int arr[] = { 3, 5, 3, 0, 8, 6, 1, 5, 8, 6, 2, 4, 9, 4, 7, 0, 1, 8, 9, 7, 3, 1, 2, 5, 9, 7, 4, 0, 2, 6 };? ? int len = (int) sizeof(arr) / sizeof(*arr);? ? heap_sort(arr, len);? ? for (int i = 0; i < len; i++)? ? ? ? cout << arr[i] << ' ';? ? cout << endl;? ? return 0;}

    參考文章:

    https://github.com/hustcc/JS-Sorting-Algorithm/blob/master/7.heapSort.md

    https://zh.wikipedia.org/wiki/%E5%A0%86%E6%8E%92%E5%BA%8F

    以下是熱心網(wǎng)友對堆排序算法的補(bǔ)充,僅供參考:

    熱心網(wǎng)友提供的補(bǔ)充1:

    上方又沒些 C# 的堆排序,艾孜爾江補(bǔ)充如下:

    /// 
    /// 堆排序
    /// 
    /// 待排序數(shù)組
    static void HeapSort(int[] arr)
    {
        int vCount = arr.Length;
        int[] tempKey = new int[vCount + 1];
        // 元素索引從1開始
        for (int i = 0; i < vCount; i++)
        {
            tempKey[i + 1] = arr[i];
        }
        // 初始數(shù)據(jù)建堆(從含最后一個結(jié)點(diǎn)的子樹開始構(gòu)建,依次向前,形成整個二叉堆)
        for (int i = vCount / 2; i >= 1; i--)
        {
            Restore(tempKey, i, vCount);
        }
        // 不斷輸出堆頂元素、重構(gòu)堆,進(jìn)行排序
        for (int i = vCount; i > 1; i--)
        {
            int temp = tempKey[i];
            tempKey[i] = tempKey[1];
            tempKey[1] = temp;
            Restore(tempKey, 1, i - 1);
        }
        //排序結(jié)果
        for (int i = 0; i < vCount; i++)
        {
            arr[i] = tempKey[i + 1];
        }
    }
    /// 
    /// 二叉堆的重構(gòu)(針對于已構(gòu)建好的二叉堆首尾互換之后的重構(gòu))
    /// 
    /// 
    /// 根結(jié)點(diǎn)j
    /// 結(jié)點(diǎn)數(shù)
    static void Restore(int[] arr, int rootNode, int nodeCount)
    {
        while (rootNode <= nodeCount / 2) // 保證根結(jié)點(diǎn)有子樹
        {
            //找出左右兒子的最大值
            int m = (2 * rootNode + 1 <= nodeCount && arr[2 * rootNode + 1] > arr[2 * rootNode]) ? 2 * rootNode + 1 : 2 * rootNode;
            if (arr[m] > arr[rootNode])
            {
                int temp = arr[m];
                arr[m] = arr[rootNode];
                arr[rootNode] = temp;
                rootNode = m;
            }
            else
            {
                break;
            }
        }
    }

    熱心網(wǎng)友提供的補(bǔ)充2:

    堆排序是不穩(wěn)定的排序!

    既然如此,每次構(gòu)建大頂堆時,在 父節(jié)點(diǎn)、左子節(jié)點(diǎn)、右子節(jié)點(diǎn)取三者中最大者作為父節(jié)點(diǎn)就行。我們追尋的只是最終排序后的結(jié)果,所以可以簡化其中的步驟。

    我將個人寫的 Java 代碼核心放在下方,有興趣的同學(xué)可以一起討論下:

    public int[] sort(int a[]) {
        int len = a.length - 1;    
        for (int i = len; i > 0; i--) {
            maxHeap(a, i);        
            //交換 跟節(jié)點(diǎn)root 與 最后一個子節(jié)點(diǎn)i 的位置        
            swap(a, 0, i);        
            //i--無序數(shù)組尺寸減少了 
        }  
        return a;
    }
    
    /**構(gòu)建一個大頂堆(完全二叉樹 ) 
    * 從  最后一個非葉子節(jié)點(diǎn)  開始,若父節(jié)點(diǎn)小于子節(jié)點(diǎn),則互換他們兩的位置。然后依次從右至左,從下到上進(jìn)行! 
    * 最后一個非葉子節(jié)點(diǎn),它的葉子節(jié)點(diǎn) 必定包括了最后一個(葉子)節(jié)點(diǎn),所以 最后一個非葉子節(jié)點(diǎn)是 a[(n+1)/2-1] 
     
    * @param a 
    * @param lastIndex 這個數(shù)組的最后一個元素 
    */
    static void maxHeap(int a[], int lastIndex) {
        for (int i = (lastIndex + 1) / 2 - 1; i >= 0; i--) {
           //反正 堆排序不穩(wěn)定,先比較父與左子,大則交換;與右子同理。(不care 左子與右子位置是否變了!) 
            if (i * 2 + 1 <= lastIndex && a[i] < a[i * 2 + 1]) {
                swap(a, i, i * 2 + 1);        
            }    
            if (i * 2 + 2 <= lastIndex && a[i] < a[i * 2 + 2]) {
                swap(a, i, i * 2 + 2);        
            }
        }
    }
    
    private void swap(int[] arr, int i, int j) {
        int temp = arr[i];
        arr[i] = arr[j];
        arr[j] = temp;
    }
    
    以上為堆排序算法詳細(xì)介紹,插入排序、希爾排序、選擇排序、冒泡排序、歸并排序、快速排序、堆排序、基數(shù)排序等排序算法各有優(yōu)缺點(diǎn),用一張圖概括:

    關(guān)于時間復(fù)雜度

    平方階 (O(n2)) 排序 各類簡單排序:直接插入、直接選擇和冒泡排序。

    線性對數(shù)階 (O(nlog2n)) 排序 快速排序、堆排序和歸并排序;

    O(n1+§)) 排序,§ 是介于 0 和 1 之間的常數(shù)。 希爾排序

    線性階 (O(n)) 排序 基數(shù)排序,此外還有桶、箱排序。

    關(guān)于穩(wěn)定性

    穩(wěn)定的排序算法:冒泡排序、插入排序、歸并排序和基數(shù)排序。

    不是穩(wěn)定的排序算法:選擇排序、快速排序、希爾排序、堆排序。

    名詞解釋:

    n:數(shù)據(jù)規(guī)模

    k:"桶"的個數(shù)

    In-place:占用常數(shù)內(nèi)存,不占用額外內(nèi)存

    Out-place:占用額外內(nèi)存

    穩(wěn)定性:排序后 2 個相等鍵值的順序和排序之前它們的順序相同

    文檔

    堆排序代碼數(shù)據(jù)結(jié)構(gòu)

    堆排序(Heapsort)是指利用堆這種數(shù)據(jù)結(jié)構(gòu)所設(shè)計(jì)的一種排序算法。堆積是一個近似完全二叉樹的結(jié)構(gòu),并同時滿足堆積的性質(zhì):即子結(jié)點(diǎn)的鍵值或索引總是小于(或者大于)它的父節(jié)點(diǎn)。堆排序可以說是一種利用堆的概念來排序的選擇排序。
    推薦度:
    為你推薦
    資訊專欄
    熱門視頻
    相關(guān)推薦
    快速排序的詳細(xì)過程 歸并排序算法詳解 希爾排序代碼實(shí)現(xiàn) 選擇排序發(fā) 冒泡法排序c語言編寫 c語言桶式排序 堆排序思想 快速排序怎么排 歸并排序怎么排 希爾排序法是怎么排的 c語言選擇排序從小到大 冒泡排序法的基本思路 桶排序java 堆排序是穩(wěn)定的排序算法 快速排序算法原理 歸并排序算法c語言 數(shù)據(jù)結(jié)構(gòu)希爾排序流程圖 什么是選擇排序法 降序排序冒泡排序優(yōu)化 堆是一種什么排序方法 桶排序是什么意思 冒泡排序代碼 基數(shù)排序c 簡單選擇排序流程圖 希爾排序怎么排序 歸并排序的具體過程 快速排序思想 堆排序算法思想 桶排序算法c 冒泡排序法流程圖 基數(shù)排序算法的基本思想 描述選擇排序算法 希爾排序圖解流程圖 歸并排序算法時間復(fù)雜度 編寫快速排序算法 堆排序算法例子 c桶排序 冒泡排序算法思想 基數(shù)排序的兩個基本過程是 選擇排序算法的時間復(fù)雜度
    Top 日韩视频在线精品视频免费观看| 兽交精品99高清毛片| 亚洲AV日韩精品久久久久久久| 国产精品久久久久9999赢消| 亚洲AV乱码久久精品蜜桃| 四库影院永久在线精品| 国产精品一级香蕉一区| 精品一区二区三区免费| 香港黄页精品视频在线| 香港三级精品三级在线专区| 四虎成人精品永久免费AV| 国产精品午夜国产小视频| 麻豆成人精品国产免费| 538精品在线观看| 国内精品久久国产大陆| 2022免费国产精品福利在线| 日韩精品福利片午夜免费观着| 少妇人妻无码精品视频| 国产999精品2卡3卡4卡| 一本久久伊人热热精品中文| 尤物国午夜精品福利网站| 久久亚洲精品无码VA大香大香| 国产三级久久久精品麻豆三级 | 亚洲精品美女视频| 久久99精品国产| 成人精品视频一区二区三区| 四虎永久在线精品影院| 欧洲国产成人精品91铁牛tv| 亚洲精品123区在线观看| 久久精品国产亚洲AV电影| 亚洲AV无码久久精品成人 | 国产精品99精品无码视亚| 好湿好大硬得深一点动态图91精品福利一区二区 | 中文字幕久久精品| 国产美女精品视频| 国产精品午夜一级毛片密呀| 国产a久久精品一区二区三区| 国产SUV精品一区二区四| 精品亚洲456在线播放| 国产精品视频网站你懂得| 2020精品国产自在现线看|